Poliglikolių PAG alyvos

Šaldytuvų kompresorių poliglikolių alyvos

Rūšis

Klampumas prie 40ºC, mm2 /s

Tankis, prie 15ºC, kg/m3

Pliūpsnio temperatūra PMCC, ºC

Stingimo temperatūra ºC,

Panaudojimas, savybės

 

 

Molyduval

Patricia KG 32

Patricia KG 46

Patricia KG 68

 

 

 

32

46

68

 

 

 

990

1030

1040

 

 

 

220

225

218

 

 

 

-52

-45

-42

 

Sintetinė poliglikolių pagrindo šaldymo alyva

su puikiomis anti oksidacinėmis, temperatūros – klampumo charakteristikomis. Visų tipų stūmokliniams, sraigtiniams ir centrifūginiams kompresoriams. Puikus tirpumas HFC R-134a šaltnešyje. Kondicionieriams, suprojektuotiems darbui su polialkilen glikoliais, senesnėms sistemoms, naudojusioms R12/mineralinės alyvos derinį.

 

 

Zerol

PAG 46

PAG 100

PAG 150

 

 

 

46

100

150

 

 

983

1046

1051

 

 

242

262

260

 

 

-50

-50

-46

 

Ypač ekstremalių temperatūrų poli-alkilen-glikolių (PAG) pagrindo

sintetinės alyvos HFC šaldikliams kaip R134a.

Ypač gamyklinio užpildymo auto kondicionieriams.

200 ltr pakuotės.

 

 

 

Zerol

RFL 46 EP

RFL 68 EP

RFL 100 EP

 

 

 

 

46

68

100

 

 

 

998

998

999

 

 

 

>200

>200

>200

 

 

 

-49

-46

-43

 

 

CO2 kompresorių sintetinė  šaldymo alyva

poli-alkilen-glikolių (PAG) pagrindu.

Nauja technologija sumažino alyvos hidroskopiškumą. Aukšto terminio, cheminio ir hidrolitinio stabilumo, puikaus sutepimo. 200 ltr pakuotės.

 

ZEROL PAG Series

Automotive Air Conditioning Compressor Lubricants

INTRODUCTION

Hydrofluorocarbon (HFC) refrigerants are commonly used worldwide as a more environmentally acceptable to CFCs, which demonstrate ozone depletion potential (ODP). Poor compatibility is observed between HFCs and mineral oil based lubricant systems and as a result the use of synthetic lubricants is well established. Almost all new mobile air conditioning systems are filled with R-134a and lubricated with polyalkylene glycol lubricants. Synthetic polyalkylene glycol (PAG) lubricants demonstrate excellent lubricity and good solubility with refrigerant HFC R-134a.

ZEROL PAG Grades are fully formulated ISO grade polyalkylene glycol lubricants designed specifically for application with R-134a in mobile air-conditioning systems. ZEROL PAG Grades are designed for application in A/C systems where the compressor requires a lubricant with viscosity of 46 - 150 cSt @ 40ºC.

RETROFITTING

ZEROL PAG Grades are suitable for applications where older vehicles using the R12/mineral oil combination are being retrofitted from CFC R12 to HFC R-134a. ZEROL PAG Grades demonstrate excellent solubility with R-12, are stable in the presence of residual levels of R-12 and are also miscible and stable with residual levels of mineral oil.

PRODUCT HANDLING

Polyalkylkene Glycols are hygroscopic relative to other synthetic lubricants and mineral oils, however  the presence of low levels of water in polyalkylene glycols cannot result in chemical instability or problems such as ice formation or metal surface corrosion. Excessive water absorption of a polyalkylene glycol may however be prevented by minimising the product's’ exposure to air.

A low water content specification of 0.03% max is defined for ZEROL PAG Grades. Correct handling of the product consists of storing bulk volumes in nitrogen blanketed vessels (or equipping them with vent driers), handling of small volumes requires simply ensuring that the container is closed when not in use and that time spent transferring product to the compressor system is minimised.

PAG ADVANTAGES

·         Excellent Solubility in HFC R-134a, and alternative HFCs.

·         Superior lubricity compared to alternative synthetic technologies and mineral oils. Improved wear protection can result in improved system efficiency, lower maintenance costs and reduced downtime.

·         Exceptional Viscosity Index – The high VI of ZEROL PAG Grades enhances compressor life by ensuring efficient running at temperature extremes, the high Viscosity Index may also allow the user to select a lower viscosity fluid than typically used, with associated power usage savings.

·         Good high temperature stability, resulting in reduced downtime and lower maintenance costs.

·         Formulating Expertise – The ZEROL PAG Grades contain efficient additive technology to protect the compressor from any problems related to corrosion of white or yellow metals, to minimise the effects of wear and extreme pressure conditions and to ensure long fluid life.

TYPICAL PROPERTIES

 

Performance Attribute

 

 

Analysis Method

 

PAG 46

PAG 100

PAG 150

Viscosity @40oC (cSt)

ASTM D445

42

97.6

145.2

Viscosity @100oC (cSt)

ASTM D445

8.3

19.9

28.5

Viscosity Index

ASTM D2270

178

229

237

Density (gcm-1)

ASTM D1298

0.983

1.046

1.051

Flash Point (oC)

ASTM D92

242

262

260

Pour Point (oC)

ASTMD97

-50

-50

-46

Water Content (wt%)

ASTM E284

0.03

0.03

0.03

TAN (mgKOHg-1)

ASTM D974

0.10

0.10

0.10

 (The typical values presented here should not be considered to constitute a specification).

Синтетическое  полиалкилгликольное масло PAG 46 для авто кондиционеров

ZEROL PAG 46  является отличным высококачественным синтетическим смазочным материалом на основе полиалкилгликолей. Это двусторонне подрезанное полиалкилен-глюколь- кондиционерное масло, разработанное специально для применения в кондиционерах автомобильной промышленности. ЗЕРОЛ ПАГ 46 разрабатывался специально для требований OEM. При этом компоненты присадок созданы передовой технологией, чтобы можно было предложить замечательную защиту для HFC-систем охлаждения, которые заполняются с R 134a. ЗЕРОЛ ПАГ 46 обладает отличной растворимостью и смазкой в автомобильных направлениях HFC-систем охлаждения. 

Свойства

  • ревосходная стабильность к окислению 
  • Высокая устойчивость тонкого маслянного слоя 
  • Непревзойденная растворимость в HFC и смешанных хладагентах 
  • Превосходная защита от коррозии  
  • Идеальный углеродный и коррозийный контроль 
  • Превосходная совместимость материалов  
  • Гигроскопичность 

Эффективность

  • Повышает эффективность кондиционеров  
  • Высокая надежность 
  • Подходит для длинных интервалов замены 
  • Подвижные части в циркуляции хладогентов идеально смазываются, уплотняются и охлаждаются 

Спецификация/Классификация/Конструкция

Применение

  • Как смазочный в HFC- кондиционерах 
  • Поршневой комрессор и винтовой компрессор, работающий с углеводородом и не имеющие место с кислородом и водой. 
  • Углеводороднный охлаждающий компрессор 

Совместимость

  • ЗЕРОЛ ПАГ 46 является полностью совместимым со сравнимыми PAG-смазочными материалами и может смешиваться. Чтобы иметь возможность использовать полностью преимущества ЗЕРОЛ ПАГ 46, тем не менее рекомендуем не смешивать его с другими смазочными материалами. 

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

Спецификация

Едн

Резултаты

Базовое масло

 

 

синтетическое AB

Цвет

ASTM D1500

 

< 1

Плотность при 15ºC

DIN 51757

kg/m³

983

ISO-класс

DIN 51519

ISO-VG

46

Вязкость при 40ºC

DIN 51562

mm²/s

42

Вязкость при 100ºC

DIN 51562

mm²/s

8,3

Температура затвердевания

DIN ISO 3016

ºC

-50

Индекс вязкост

ASTM D2270

 

178

Температура вспышки CO

DIN ISO 2592

ºC

242

Кислотность TAN

ASTM D974

mgKOHg-1

0,10

Влага

ASTM E284

wt%

< 0,03

 

Poliglikolių šaldymo alyva kaip geriausias pasirinkimas CO2 kompresoriams

In conclusion we believe that:

PAG is the most available and suitable base oil for a CO2 refrigerating systems.

Our conclusion is based on: (1) Although PAG is less miscible than the other tested oils, oil return problems will not occur. (2) PAG shows the best lubricity performance. (3) POE shows poor lubricity and stability. (4) PC is worse than PAG and PVE in lubricity. (5) PAG oil is already successfully and extensively used by Japanese OEM’s for hermetic compressors used in heat pump water heatersystems and automotive A/C systems.

3.1 Miscibility of Oils/CO2 mixtures Fig.7 shows the two-phase separation temperature curve of PAG. 7, 9 and 20 in PAG curves represent the 100? kinetic viscosity. PAG curves 9 and 20 have an immiscible region from 10 wt% to 40 wt% oil ratio. However this graph indicates that 50~ 60 wt% CO2 refrigerant is dissolved in PAG at the separated oil layer. In practice, even if two-phase separation occurs in the cooling system (the evaporator and the accumulator), there was no trouble for oil return to occur because of the lowered PAG’s viscosity with CO2. In the case of mineral oils (MO’s), alkyl benzenes (AB) and Polyalphaolefins (PAO), CO2 is less dissolved in all regions because of there immiscibility with CO2. The two-phase separation temperature curves of PVE, POE and PC are shown in Fig.8. All these oils have a wide miscible region when compared to PAG’s. The oxygen-containing synthetic oils such as PAG, PVE, POE and PC are called the miscible type oils with CO2. On the other hand, MO, AB and PAO are considered to be the immiscible type refrigerating oils. It is necessary to use an oil separator with these immiscible type oils. 3.2 Viscosity of Oils/CO2 Mixtures Table 2 summarizes the viscosity of four oils at two conditions (supercritical and miscible region) referred to Table 1. The first condition (50? and 9 MPa) is selected to compare the effect of solubility on viscosity at the supercritical condition. Under this condition PAG/CO2 mixture shows the lowest solubility and highest viscosity among the four oils. As shown in Fig.1, the discharge area of the compressor experiences severely high temperature and pressure. These results indicate that PAG is much more suitable oil for lubricity at the supercritical condition. It is found that high solubility with CO2 tends to lower the viscosity. Seeton 5) and Nagahama6) reported that the viscosity of POE was lower than that of PAG. This was also confirmed in our investigation. At the low temperature (-10? , miscible region), at least 60 wt% of CO2 is dissolved in the PAG liquid layer. Thus even if the mixture is separated into two layers, we expect the mixture will keep sufficient fluidity to ensure oil return. 3.3 Lubricity Test Results at the subcritical condition The preliminary lubricity investigation is carried out by means of the hermetic type "Brock on Ring" friction and wear tester. The purpose of this test is to compare the lubricating effect of the additive-treated oils in a CO2 atmosphere with those in a R134a atmosphere. Fig.9, shows the anti-wear test results for four kinds of oils that contained the same additive formulation as a commercial PAG oil. The results indicate that PAG performed the best (least amount of wear) followed by (in descending order) PVE, PC then POE. Although these results were conducted with a test apparatus, we can expect that PAG and PVE would have good lubricity in the supercritical condition of a compressor operation. 3.4 Lubricity Test Results at the supe rcritical condition Four kinds of base oils are investigated by the hermetic type “ Ball-on-Disk ” friction and wear tester in the supercritical condition (100? , 8.5MPa). Fig.10 shows the pictures of the surface on the steel ball and the sliding path on the disk. In this test, the contact configuration between the steel ball and the disk is the point-contact. Because of this, a smaller diameter scar on the balls indicates better lubricity. Furthermore, lubricity can also be measured by examining the width and depth of the sliding path running across the original grinding marks (created during disc manufacture) on the disc. The results obtained are summarized in Table 3. In the case of PAG, the wear scar diameter on the steel ball surface is much smaller and the sliding path on the disc is shallow and narrow.. In addition, the original grinding marks on the disc still remain. The scar diameter on the balls with PVE is a little wider than that with PAG. A wider scar is formed on the balls when POE was tested indicating less lubricity. Also, the original grinding marks on the disk surfaces completely disappeared when POE and PC were tested. R080, Page 4 International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2004 Fig.11 shows the comparison of the wear width on steel balls and the wear depth on Aluminum disks under 0.7 and 8.5 MPa CO2 conditions. In both high and low pressure conditions, the wear situation on the ball and the disk is approximately the same for PAG, PVE and PC. POE stands out from the rest showing extreme wear at the supercritical condition. This data indicates that much caution must be taken when using POE in lubrication between Al and Fe at this severe condition. 3.5 Stability Test Results Table 4 gives the results of the stability tests. The appearance of the testing oils and metal strips are summarized. All of the oils were clear and exhibited good appearance. The copper strip showed slight discoloration in all the tested oils except PVE. Fig.12 shows the results of acid number (AN) after the stability test. Dramatic increase of AN is observed for POE. The reason for this is the production of carboxylic acid by hydrolysis. Therefore it’s critical for severe water control when using POE. We also evaluated the stability of the additive containing PAG at 220? for 10days. Table 5 shows the results of acid number (AN) and additive contents after the stability test. The test results indicate that PAG oil is tolerant in both water and air containing conditions. The test results also indicate a long, in use, product life 3.6 Endurance Test Results For the endurance tests, we developed the PAG oil which contains antiwear, antioxidant and acid catcher agents. For hermetic compressors used for heat pump water heater systems and automotive A/C systems, electrical resistibility of the oil and CO2 mixtures is required. Fig.13 shows the measurement results of volumetric resistibility of the PAG oil/CO2, PVE/R410A and POE/R410A mixtures. In these results, the bottom of PAG/CO2 is higher than PVE/R410A and POE/R410A. Therefore, we conclude that PAG oil/CO2 is the most suited for hermetic compressors. Table 6 shows the results of acid number (AN) and additive contents after 5000Hr endurance tests of CO2 refrigerant two-stage compressors for heat pump water heater system in commercial use. The PAG oil indicates no change from its new oil condition and therefore is expected to have long-term reliability.