Tepalas pritaikymui

Tepalas pagal pritaikymą

Pritaikymas

Universalus produktas

 

Universalus guolių tepalas

 

Leprixol Lycos MZ 2

 

Grafitinis guolių tepalas

 

Molyduval Long-Life G 2

 

Molibdeninis guolių tepalas

 

Leprixol Lycos MO2

 

EP guolių tepalas

 

Leprixol Lycos EP 2

 

HD guolių tepalas

 

Molyduval Long-Life HD 2

 

Aukštatemperatūrinis tepalas

 

Molyduval Bentogen 2

 

Žematemperatūrinis tepalas

 

 

Molyduval Aero LM 2

 

 

Sintetinis tepalas

 

Molyduval Vlenzia Synth

 

Maistinis tepalas

 

Molyduval Soraja BM 2

 

Silikoninis tepalas

 

Molyduval Siligra GI

 

  • Tefloninis tepalas

 

Molyduval Long-Life Z 2

 

Dantračių tepalas

 

Molyduval Prometheus L 00

 

Reduktorių tepalas

 

Molyduval Prometheus MA

 

Grandinių tepalas

 

Molyduval Sekorex L 00

 

Atsparus vandeniui tepalas

 

Molyduval Bariplex

 

Didelių greičių guolių tepalas

 

Molyduval Supravit LM 2

 

Trosų tepalas

 

Molyduval Ferroxin DSF

 

 

Plastiko – plastmasės tepalas

 

Molyduval Polypan PAK 2

 

 

Medienos tepalas

 

Molyduval Aladin FC Spray

 

Biologiškas tepalas

 

Molyduval Rabilub 2

 

Montazine tepimo pasta

 

Molyduval Quick Paste

 

Grafitinė sutepimo pasta

 

Molyduval Quick BA 1 CC

 

Tefloninė pasta

 

Molyduval Carat CLEB 1Z

 

Vario sutepimo pasta

 

Molyduval Ciric B 271

 

Cinko sutepimo pasta

 

Molyduval Ciric Z

 

Aliuminio sutepimo pasta

 

Molyduval Ciric A

 

Keramikos sutepimo pasta

 

Molyduval Titus ZKG

 

Reduktorių alyva

 

Leprixol Gear SP 150

 

Hipoidinė alyva

 

Repsol Zeus EP GL-5 90

 

Transmisinė alyva

 

Repsol Cartago 80w90

 

Transformatorinė alyva

 

Molyduval Pontos VDE

 

Hidraulinė alyva

 

Leprixol HYD 46 OPM

 

Lauko hidraulinė alyva

 

Leprixol HVC 32

 

Grandiniu alyva

 

Molyduval Sekorex TM

 

Kompresorių alyva

 

Molyduval Paticia CDM 46

 

 

Šaldytuvų - šaldymo alyva

 

Repsol Polar 68

 

Vakuuminė alyva

 

Molyduval Amadeus M 100

 

Pneumatinė alyva

 

Molyduval Phoenix D 22

 

Cilindrinė alyva

 

Repsol Helen 240

 

Terminė šilumos alyva

 

Leprixol Therm M 46

 

Formų alyva

 

Multiform B Classic

 

Medicininė alyva

 

Leprixol Weissol PW 15

 

Parafininė alyva

 

Divinol Paraffinum Liquidum DA

 

Baltoji techninė alyva

 

Leprixol Hydrostar HT 22

 

Pjovimo alyva

 

Molylub Cutoil Uni 10

 

Pjovimo emulsija

 

Molyduval Aqualub CS 18

 

Šlifavimo emulsija

 

Molylub Grindfluid THS

 

Sriegimo alyva

 

Molyduval Supercut

 

Šlifavimo alyva

 

Molyduval Supergrind

 

Valcavimo alyva

 

Molylub Drawoil 511

 

Kalibravimo alyva

 

Molylub Cal EP 5

 

Štampavimo alyva

 

Molylub Press 40

 

Elektroerozinė alyva

 

Molylub EDM 19

Tikslesnis pakeičiamumas – pagal Jūsų įrangos originalias tepimo rekomendacijas ir jos darbo sąlygas 

Lubrication

is the process, or technique employed to reduce wear of one or both surfaces in close proximity, and moving relative to each other, by interposing a substance called lubricant between the surfaces to carry or to help carry the load (pressure generated) between the opposing surfaces. The interposed lubricant film can be a solid, (e.g. MoS2) a solid/liquid dispersion, a liquid, a liquid-liquid dispersion (a grease) or, exceptionally, a gas.

In the most common case the applied load is carried by pressure generated within the fluid due to the frictional viscous resistance to motion of the lubricating fluid between the surfaces.

Lubrication can also describe the phenomenon where such reduction of wear occurs without human intervention (hydroplaning on a road).

The science of friction, lubrication and wear is called tribology.

Adequate lubrication allows smooth continuous operation of equipment, with only mild wear, and without excessive stresses or seizures at bearings. When lubrication breaks down, metal or other components can rub destructively over each other, causing destructive damage, heat, and failure.

The regimes of lubrication

As the load increases on the contacting surfaces three distinct situations can be observed with respect to the mode of lubrication, which are called regimes of lubrication:

Fluid film lubrication is the lubrication regime in which through viscous forces the load is fully supported by the lubricant within the space or gap between the parts in motion relative to one another object (the lubricated conjunction) and solid–solid contact is avoided.

Hydrostatic lubrication is when an external pressure is applied to the lubricant in the bearing, to maintain the fluid lubricant film where it would otherwise be squeezed out.

Hydrodynamic lubrication is where the motion of the contacting surfaces, and the exact design of the bearing is used to pump lubricant around the bearing to maintain the lubricating film. This design of bearing may wear when started, stopped or reversed, as the lubricant film breaks down.

Elastohydrodynamic lubrication: Mostly for nonconforming surfaces or higher load conditions, the bodies suffer elastic strains at the contact. Such strain creates a load-bearing area, which provides an almost parallel gap for the fluid to flow through. Much as in hydrodynamic lubrication, the motion of the contacting bodies generates a flow induced pressure, which acts as the bearing force over the contact area. In such high pressure regimes, the viscosity of the fluid may rise considerably. At full elastohydrodynamic lubrication the generated lubricant film completely separates the surfaces. Contact between raised solid features, or asperities, can occur, leading to a mixed-lubrication or boundary lubrication regime.

Boundary lubrication (also called boundary film lubrication): The bodies come into closer contact at their asperities; the heat developed by the local pressures causes a condition which is called stick-slip and some asperities break off. At the elevated temperature and pressure conditions chemically reactive constituents of the lubricant react with the contact surface forming a highly resistant tenacious layer, or film on the moving solid surfaces (boundary film) which is capable of supporting the load and major wear or breakdown is avoided. Boundary lubrication is also defined as that regime in which the load is carried by the surface asperities rather than by the lubricant.

Besides supporting the load the lubricant may have to perform other functions as well, for instance it may cool the contact areas and remove wear products. While carrying out these functions the lubricant is constantly replaced from the contact areas either by the relative movement (hydrodynamics) or by externally induced forces.

Lubrication is required for correct operation of mechanical systems pistons, pumps, cams, bearings, turbines, cutting tools etc. where without lubrication the pressure between the surfaces in close proximity would generate enough heat for rapid surface damage which in a coarsened condition may literally weld the surfaces together, causing seizure.

In some applications, such as piston engines, the film between the piston and the cylinder wall also seals the combustion chamber, preventing combustion gases from escaping into the crankcase.